• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

С развитием мобильных устройств и видео технологий задачи компьютерного зрения становятся особенно актуальными. Сегодня компьютерное зрение активно применяется в таких областях, как медицина, картография, поиск, видеонаблюдение и беспилотные автомобили.

В данном курсе будут подробно разобраны решения основных задач компьютерного зрения: классификация изображений, распознавание и детекция объектов и сегментация изображений. Также мы затронем темы поиска изображений и распознавание рукописного ввода. В первой части курса слушатели познакомятся с классическими алгоритмами компьютерного зрения и разберут практические примеры с использованием библиотеки OpenCV. Вторая часть курса посвящена сверточным нейронным сетям. В этой части мы уделим особое внимание практическому применению нейронных сетей для задач компьютерного зрения. Также  познакомимся с популярными библиотеками для работы с нейросетями такими как Keras и TensorFlow.

Поступление

Документы для приема

Оригинал и копия паспорта или документа, заменяющего его

Оригинал и копия документа об образовании и квалификации или справка об обучении для лиц, получающих высшее образование

Оригинал и копия документа об изменении фамилии, имени, отчества (при необходимости)

Содержание программы

  • Базовая теория: форматы, преобразование изображений с помощью фильтров, знакомство с библиотекой OpenCV
  • Выделение инвариантных признаков, стичинг и поиск похожих изображений
  • Сегментация изображений, детекция и трекинг объектов на изображении
  • Введение в нейронные сети
  • Сверточные сети для обработки изображений. Знакомство с фреймворком Keras
  • Обзор популярных архитектур сетей. Аугментация изображений и тюнинг обученных сетей
  • Обзор архитектур сетей для сегментации и детекции объектов на изображении.
  • Решение задачи распознавания рукописного ввода с помощью нейронных сетей

Преподаватели

Вячеслав Мурашкин

Выпускник МГТУ имени Баумана, Высшей школы экономики и Школы анализа данных Яндекса. Более шести лет занимается проектами в области анализа больших массивов данных, рекомендательных систем и машинного обучения. Имеет успешный опыт работы как в крупных IT компаниях, так и в небольших стартапах. В настоящее время работает разработчиком-исследователем в направлении беспилотных автомобилей в Яндексе.

Подать заявку

Вас могут заинтересовать

  • 24 академических часов
  • Очно-заочная форма
  • 114 академических часа, в том числе 88 часов лекций и семинаров
  • Очно-заочная форма
  • 44 академических часа